Contact-dependent mechanical properties of graphene nanoribbons: an ab initio study.

نویسندگان

  • Arezoo Dianat
  • Dmitry A Ryndyk
  • Gianaurelio Cuniberti
چکیده

The mechanical properties of graphene nanoribbons on Ni(111) surfaces with different contact sizes are investigated by means of density functional theory. For finite contact sizes, the stress behavior of graphene nanoribbons on metal electrodes is likely to be similar to that of suspended graphene, however the critical strain is not reached due to the sliding friction at the interface. The competition between frictional and external forces is responsible for the nonmonotonic stress behavior. It is indicated that the stick-slip motions of graphene on Ni(111) are as a result of applied external forces on the GNR/metal contact. Moreover, the effect of vacancies and chemical doping on the sliding friction are addressed. Graphene starts to slide on the surface under a much lower external force in the case of defected graphene, due to the weaker binding to the surface. For infinite contact sizes, a linear relationship between stress and strain are found until structural failure occurs by 11% applied strain. The corresponding critical strain for the suspended GNR (without electrodes) has been found to be 13%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Elastic Properties of Porous Graphene Using an Ab Initio Study

Importance of covalent bonded two-dimensional monolayer nanostructures and also hydrocarbons is undeniably responsible for creation of new fascinating materials like polyphenylene polymer, a hydrocarbon super honeycomb network, so-called porous graphene. The mechanical properties of porous graphene such as its Young’s modulus, Poisson’s ratio and the bulk modulus as the determinative properties...

متن کامل

Boron doped graphene nanoribbons

Submitted for the MAR07 Meeting of The American Physical Society Boron doped graphene nanoribbons THIAGO MARTINS, Instituto de Fisica Universidade de Sao Paulo, HIROKI MIWA, Instituto de Fisica, Universidade Federal de Uberlandia, ANTONIO J.R. DA SILVA, A. FAZZIO, Instituto de Fisica Universidade de Sao Paulo — We will present a detailed study of the electronic, magnetic and transport propertie...

متن کامل

Quantum transport modeling of defected graphene nanoribbons

We study backscattering phenomena during conduction for graphene nanoribbons of mm lengths, from single vacancy scatterers up to finite defect concentrations. Using ab initio calibrated Hamiltonian models we highlight the importance of confinement and geometry on the shaping of the local density of states around the defects that can lead to important alterations on the transport process, giving...

متن کامل

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Optical spectrum of bottom-up graphene nanoribbons: towards efficient atom-thick excitonic solar cells

Recently, atomically well-defined cove-shaped graphene nanoribbons have been obtained using bottom-up synthesis. These nanoribbons have an optical gap in the visible range of the spectrum which make them candidates for donor materials in photovoltaic devices. From the atomistic point of view, their electronic and optical properties are not clearly understood. Therefore, in this work we carry ou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 27 2  شماره 

صفحات  -

تاریخ انتشار 2016